#!/bin/bash
#SBATCH -c2 --gpus-per-node=v100:2
#SBATCH --mem-per-cpu=4000 --time=1:0:0
module purge
ml StdEnv/2020 gcc/9.3.0 cuda/11.4 openmpi/4.0.3 ambertools/23
ml openmm/8.0.0 netcdf/4.7.4 hdf5/1.10.6 mpi4py/3.0.3
virtualenv ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate
pip install --no-index netCDF4
python openmm_input.py
Benchmark time: 36.97654340446641 ns/day, Using 2 GPUs, bg12301
Benchmark time: 37.031687311104925 ns/day, Using 2 GPUs, bg11909
Benchmark time: 37.06346890567843 ns/day, Using 2 GPUs, bg12410
Benchmark time: 37.07486886067762 ns/day, Using 2 GPUs, bg11904
Benchmark time: 37.11572613096987 ns/day, Using 2 GPUs, bg12410
Benchmark time: 37.210365845253094 ns/day, Using 2 GPUs, bg11606
Benchmark time: 37.25189456049574 ns/day, Using 2 GPUs, bg12308
Benchmark time: 37.39721954931677 ns/day, Using 2 GPUs, bg11309
#!/cvmfs/soft.computecanada.ca/easybuild/software/2020/avx512/Core/python/3.8.10/bin/python
# FILE openmm_input.py
import openmm as mm
import openmm.app as app
from openmm.unit import *
import sys, time, netCDF4, ctypes
from parmed import load_file
from parmed.openmm import StateDataReporter, NetCDFReporter
CUDA_SUCCESS = 0
cuda = ctypes.CDLL("libcuda.so")
device = ctypes.c_int()
nGpus = ctypes.c_int()
name = b" " * 100
devID=[]
result = cuda.cuInit(0)
if result != CUDA_SUCCESS:
print("CUDA is not available")
quit()
cuda.cuDeviceGetCount(ctypes.byref(nGpus))
for i in range(nGpus.value):
result = cuda.cuDeviceGet(ctypes.byref(device), i)
result = cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device)
print("Device %s: %s" % (device.value, name.split(b"\0", 1)[0].decode()))
devID.append(device.value)
dvi=",".join(str(i) for i in devID)
amber_sys=load_file("prmtop.parm7", "restart.rst7")
ncrst=app.amberinpcrdfile.AmberInpcrdFile("restart.rst7")
nsteps=100000
system=amber_sys.createSystem(
nonbondedMethod=app.PME,
ewaldErrorTolerance=0.0004,
nonbondedCutoff=8.0*angstroms,
constraints=app.HBonds,
removeCMMotion = True,
)
#PME Grids:
#EwaldTolerance=0.00040 Grid=[144, 144, 144]
#EwaldTolerance=0.00045 Grid=[140, 140, 140]
#EwaldTolerance=0.00050 Grid=[135, 135, 135]
#EwaldTolerance=0.00065 Grid=[128, 128, 128]
integrator = mm.LangevinIntegrator(300*kelvin, 1.0/picoseconds, 1.0*femtoseconds,)
barostat = mm.MonteCarloBarostat(1.0*atmosphere, 300.0*kelvin, 25)
system.addForce(barostat)
platform = mm.Platform.getPlatformByName("CUDA")
prop = dict(CudaPrecision="mixed", DeviceIndex=dvi)
sim = app.Simulation(amber_sys.topology, system, integrator, platform, prop)
sim.context.setPositions(amber_sys.positions)
sim.context.setVelocities(ncrst.velocities)
sim.reporters.append(
StateDataReporter(
sys.stdout,
400,
step=True,
time=False,
potentialEnergy=True,
kineticEnergy=True,
temperature=True,
volume=True
)
)
sim.reporters.append(
NetCDFReporter(
"trajectory.nc",
50000,
crds=True
)
)
print("Running dynamics")
start = time.time()
sim.step(nsteps)
elapsed=time.time() - start
benchmark_time=3.6*2.4*nsteps*0.01/elapsed
print(f"Elapsed time: {elapsed} sec\nBenchmark time: {benchmark_time} ns/day")